8 research outputs found

    Time-dependent opportunities in energy business : a comparative study of locally available renewable and conventional fuels

    Get PDF
    This work investigates and compares energy-related, private business strategies, potentially interesting for investors willing to exploit either local biomass sources or strategic conventional fuels. Two distinct fuels and related power-production technologies are compared as a case study, in terms of economic efficiency: the biomass of cotton stalks and the natural gas. The carbon capture and storage option are also investigated for power plants based on both fuel types. The model used in this study investigates important economic aspects using a "real options" method instead of traditional Discounted Cash Flow techniques, as it might handle in a more effective way the problems arising from the stochastic nature of significant cash flow contributors' evolution like electricity, fuel and CO(2) allowance prices. The capital costs have also a functional relationship with time, thus providing an additional reason for implementing, "real options" as well as the learning-curves technique. The methodology as well as the results presented in this work, may lead to interesting conclusions and affect potential private investment strategies and future decision making. This study indicates that both technologies lead to positive investment yields, with the natural gas being more profitable for the case study examined, while the carbon capture and storage does not seem to be cost efficient with the current CO(2) allowance prices. Furthermore, low interest rates might encourage potential investors to wait before actualising their business plans while higher interest rates favor immediate investment decisions. (C) 2009 Elsevier Ltd. All rights reserved

    Optimisation of electricity energy markets and assessment of CO2 trading on their structure : a stochastic analysis of the greek power sector

    Get PDF
    Power production was traditionally dominated by monopolies. After a long period of research and organisational advances in international level, electricity markets have been deregulated allowing customers to choose their provider and new producers to compete the former Public Power Companies. Vast changes have been made in the European legal framework but still, the experience gathered is not sufficient to derive safe conclusions regarding the efficiency and reliability of deregulation. Furthermore, emissions' trading progressively becomes a reality in many respects, compliance with Kyoto protocol's targets is a necessity, and stability of the national grid's operation is a constraint of vital importance. Consequently, the production of electricity should not rely solely in conventional energy sources neither in renewable ones but on a mixed structure. Finding this optimal mix is the primary objective of the study. A computational tool has been created, that simulates and optimises the future electricity generation structure based on existing as well as on emerging technologies. The results focus on the Greek Power Sector and indicate a gradual decreasing of anticipated CO2 emissions while the socioeconomic constraints and reliability requirements of the system are met. Policy interventions are pointed out based on the numerical results of the model. (C) 2010 Elsevier Ltd. All rights reserved

    Investment planning in electricity production under CO2 price uncertainty

    Get PDF
    The scope of this work is to investigate the effect that various scenarios for emission allowance price evolution may have on the future electricity generation mix of Greece. The renewable energy generation targets are taken into consideration as a constraint of the system, and the learning rates of the various technologies are included in the calculations. The national electricity generation system is modelled for long-term analysis and an optimisation method is applied, to determine the optimal generating mix that minimises electricity generation cost, while satisfying the system constraints and incorporating the uncertainty of emission allowance prices. In addition, an investigation is made to identify if a point should be expected when renewable energy will be more cost-effective than conventional fuel electricity generation. The work is interesting for investment planning in the electricity market, as it may provide directions on which technologies are most probable to dominate the market in the future, and therefore are of interest to be included in the future power portfolios of related investors. (C) 2010 Elsevier B.V. All rights reserved

    Optimisation and investment analysis of two biomass-to-heat supply chain structures

    Get PDF
    As oil prices have risen dramatically lately, many people explore alternative ways of heating their residences and businesses in order to reduce the respective cost. One of the options usually considered nowadays is biomass, especially in rural areas with significant local biomass availability. This work focuses on comparing two different biomass energy exploitation systems, aiming to provide heat to a specific number of customers at a specific cost. The first system explored is producing pellets from biomass and distributing them to the final customers for use in domestic pellet boilers. The second option is building a centralised co-generation (CHP) unit that will generate electricity and heat. Electricity will be fed to the grid, whereas heat will be distributed to the customers via a district heating network. The biomass source examined is agricultural residues and the model is applied to a case study region in Greece. The analysis is performed from the viewpoint of the potential investor. Several design characteristics of both systems are optimised. In both cases the whole biomass-to-energy supply chain is modelled, both upstream and downstream of the pelleting/CHP units. The results of the case study show that both options have positive financial yield, with the pelleting plant having higher yield. However, the sensitivity analysis reveals that the pelleting plant yield is much more sensitive than that of the CHP plant, therefore constituting a riskier investment. The model presented may be used as a decision support system for potential investors willing to engage in the biomass energy field

    Ethnographia

    Get PDF
    This chapter looks at the effect of greenhouse gas emissions trading on investment decisions for biomass-to-energy productio

    Optimisation of electricity energy markets and assessment of CO2 trading on their structure: A stochastic analysis of the Greek Power Sector

    No full text
    Power production was traditionally dominated by monopolies. After a long period of research and organisational advances in international level, electricity markets have been deregulated allowing customers to choose their provider and new producers to compete the former Public Power Companies. Vast changes have been made in the European legal framework but still, the experience gathered is not sufficient to derive safe conclusions regarding the efficiency and reliability of deregulation. Furthermore, emissions' trading progressively becomes a reality in many respects, compliance with Kyoto protocol's targets is a necessity, and stability of the national grid's operation is a constraint of vital importance. Consequently, the production of electricity should not rely solely in conventional energy sources neither in renewable ones but on a mixed structure. Finding this optimal mix is the primary objective of the study. A computational tool has been created, that simulates and optimises the future electricity generation structure based on existing as well as on emerging technologies. The results focus on the Greek Power Sector and indicate a gradual decreasing of anticipated CO2 emissions while the socio-economic constraints and reliability requirements of the system are met. Policy interventions are pointed out based on the numerical results of the model.Power sector Optimisation Emissions trading Stochastic forecast

    Time-dependent opportunities in energy business: A comparative study of locally available renewable and conventional fuels

    No full text
    This work investigates and compares energy-related, private business strategies, potentially interesting for investors willing to exploit either local biomass sources or strategic conventional fuels. Two distinct fuels and related power-production technologies are compared as a case study, in terms of economic efficiency: the biomass of cotton stalks and the natural gas. The carbon capture and storage option are also investigated for power plants based on both fuel types. The model used in this study investigates important economic aspects using a "real options" method instead of traditional Discounted Cash Flow techniques, as it might handle in a more effective way the problems arising from the stochastic nature of significant cash flow contributors' evolution like electricity, fuel and CO2 allowance prices. The capital costs have also a functional relationship with time, thus providing an additional reason for implementing "real options" as well as the learning-curves technique. The methodology as well as the results presented in this work, may lead to interesting conclusions and affect potential private investment strategies and future decision making. This study indicates that both technologies lead to positive investment yields, with the natural gas being more profitable for the case study examined, while the carbon capture and storage does not seem to be cost efficient with the current CO2 allowance prices. Furthermore, low interest rates might encourage potential investors to wait before actualising their business plans while higher interest rates favor immediate investment decisions.Real options Investment optimisation Forecasting Biomass Natural gas Carbon capture
    corecore